If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+26x=79
We move all terms to the left:
10x^2+26x-(79)=0
a = 10; b = 26; c = -79;
Δ = b2-4ac
Δ = 262-4·10·(-79)
Δ = 3836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3836}=\sqrt{4*959}=\sqrt{4}*\sqrt{959}=2\sqrt{959}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{959}}{2*10}=\frac{-26-2\sqrt{959}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{959}}{2*10}=\frac{-26+2\sqrt{959}}{20} $
| 54w+123.95=753.95 | | 3x+2=6(x+9) | | (4x+7)/3=10 | | 1+2k=3k | | 2(x+3)=4x+10* | | -10/8=x/2 | | 2a+4=-(-7a+6) | | 2x18+11=x+10 | | 6(x-5)=-3(7x+1) | | 6(-2g-2)=-(13g+2) | | 2−2z=6 | | (1/4)+4=(3/4)(t+8) | | 3x-15+6x+2=4 | | 20d-17d=12 | | 3x+2=9(x+5) | | 2(5x-7)-3x=35 | | 4=(5.2÷x) | | 48-(5x+11)=5(x+3)+x | | -2+x=-3* | | 36=18/b | | -3(1+4x)=21-8x | | 3x+2=9(x+5 | | -5n-10=8-49 | | x/3+2.5=7.5 | | 36=-2(-6+3x)+6(-3x-4) | | 98,01/x=27 | | 10w-9w=9 | | 18+2x=20* | | -30+7n=-(2n-3)-6 | | 1r-1=4+6r | | 9=p/17 | | 5x+5x-2=18 |